Order Preserving Clustering over Multiple Time Course Experiments
نویسندگان
چکیده
Clustering still represents the most commonly used technique to analyze gene expression data—be it classical clustering approaches that aim at finding biologically relevant gene groups or biclustering methods that focus on identifying subset of genes that behave similarly over a subset of conditions. Usually, the measurements of different experiments are mixed together in a single gene expression matrix, where the information about which experiments belong together, e.g., in the context of a time course, is lost. This paper investigates the question of how to exploit the information about related experiments and to effectively use it in the clustering process. To this end, the idea of order preserving clusters that has been presented in [2] is extended and integrated in an evolutionary algorithm framework that allows simultaneous clustering over multiple time course experiments while keeping the distinct time series data separate.
منابع مشابه
Repeated Record Ordering for Constrained Size Clustering
One of the main techniques used in data mining is data clustering, which has many applications in computer science, biology, and social sciences. Constrained clustering is a type of clustering in which side information provided by the user is incorporated into current clustering algorithms. One of the well researched constrained clustering algorithms is called microaggregation. In a microaggreg...
متن کاملA Linear Mixed Effects Clustering Model for Multi-species Time Course Gene Expression Data
Environmental and evolutionary biologists have recently benefited from advances in experimental design and statistical analysis for complex gene expression microarray experiments. The high-throughput time course experiment highlights gene function by uncovering functionally similar responses across varied experimental conditions. Since these time-dependent responses can be compared across phylo...
متن کاملEvolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System
The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...
متن کاملA Linear Mixed Model Spline Framework for Analysing Time Course ‘Omics’ Data
Time course 'omics' experiments are becoming increasingly important to study system-wide dynamic regulation. Despite their high information content, analysis remains challenging. 'Omics' technologies capture quantitative measurements on tens of thousands of molecules. Therefore, in a time course 'omics' experiment molecules are measured for multiple subjects over multiple time points. This resu...
متن کاملAn Evolution-based Approach to Preserving User Preferences in Document-Category Management
Document clustering is critical to automated document management, hereby a set of documents are clustered in multiple categories, each containing similar or relevant documents. Most previous research assumes time invariability of document category; i.e., not evolving over time after creation. The adequacy of an existing category understandably may diminish as it includes influxes of new documen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005